求函数值域的方法,函数的值域怎么算
1、函数的值域怎么算
求函数的值域的常用方法如下:
1、图像法:根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6、判别式法:判别式法即利用二次函数的判别式求值域。
7、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
8、折叠三角代换法:利用基本的三角关系式,进行简化求值。例如:a的平方+b的平方=1,c的平方+d的平方=1,求证:ac+bd小于或等于1。直接计算麻烦,用三角代换法比较简单。做法:设a=sinx ,b=cosx,c=siny ,d=cosy,则ac+bd=sinx*siny+cosx*cosy =cos(y-x),因为我们知道cos(y-x)小于等于1,所以不等式成立。

2、函数的值域怎么算
求值域方法:
1、图像法:根据函数图象,观察最高点和最低点的纵坐标。
2、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
值域:数学名词,函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R;
y=k/x 的值域为(-∞,0)∪(0,+∞);
y=√x的值域为x≥0;
y=ax^2+bx+c 当a\\u003e0时,值域为 [4ac-b^2/4a,+∞) ;
当a\\u003c0时,值域为(-∞,4ac-b^2/4a];
y=a^x 的值域为(0,+∞);
y=lgx的值域为R。

3、求函数值域方法
求函数值域方法有:
1,配方法(二次函数或二次形式的函数求值域的典型方法)
2,换元法(比如三角换元,整体代换)
3,判别式法
4,利用函数单调性(闭区间上连续函数有最大,最小值)
5,数形结合的方法(利用问题的几何意义,将代数问题转化为几何问题)
6,求导数的方法(似乎所有的给定解析式求最值都可以用求导数的方法,但有些初等问题用导数求解相当啰嗦)
7,反解法(利用函数和它的反函数的定义域和值域的互逆关系,通过恒等变形,求原函数的值域)
8,其它特殊方法
求函数值域的常用方法有:化归法、复合函数法、判别式法、图像法、分离常数法、反函数法、换元法、不等式法、单调性法。在函数中,因变量的变化而变化的取值范围叫做这个函数的值域。
求值域的方法
化归法:
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
图像法:根据函数图像,观察最高点和最低点的纵坐标。
配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。
反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
4、如何求解函数的值域
函数的值域解法有:配方法、换元法、最值法、反函数法等。
1、换元法。
多用于复合型函数。通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。特别注意中间变量(新量)的变化范围。
2、配方法。
多用于二次(型)函数。将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
3、最值法。
如果函数f(x)存在最大值M和最小值m,那么值域为[m,M],因此求值域的方法与求最值的方法是相通的。
4、反函数法。
有的又叫反解法,函数和它的反函数的定义域与值域互换。如果一个函数的值域不易求而它的反函数的定义域易求,那么我们通过求后者而得出前者。
值域的简介:
值域是一个数学名词,是指函数经典定义中,因变量改变而改变的取值范围。在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。
在实数分析中,函数的值域是实数,而在复数域中,值域是复数。“范围”与“值域”是我们在学习中经常遇到的两个概念。许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满足某个条件的一些值所在的集合(即集合中的元素不一定都满足这个条件)。

请添加微信号咨询:19071507959
最新更新
推荐阅读
猜你喜欢
关注我们

留学规划
留学考试
留学指南
留学攻略
留学生活
留学信息
留学专业
留学签证
关于我们
网站首页







