菱形的判定,菱形的判定方法4条
1、菱形的判定方法4条
菱形的判定方法如下:
邻边相等的平行四边形
对角线相互垂直平行四边形
对角线各自平分一组对角
矩形的判定方法:
对角线相等的平行四边形
有一个角为直角的平行四边形
正方形的判定方法:
①对角线相互垂直;
②对角线相等;
③有一个角为直角;
④有一组邻边相等;
(以上任意选取两个条件)的平行四边形为正方形
菱形的定义:一组邻边相等的平行四边形叫做菱形。
菱形的性质:
1、对角线互相垂直且平分;
2、四条边都相等;
3、对角相等,邻角互补;
4、每条对角线平分一组对角;
5、菱形既是轴对称图形,对称轴是两条对角线所在直线,也是中心对称图形;
6、在60度的菱形中,短对角线等于边长,长对角线是短对角线的根号3倍;
7、菱形具备平行四边形的一切性质。
菱形特点是:
菱形具有平行四边形的一切性质。
菱形的四条边都相等。
菱形的对角线互相垂直平分且平分每一组对角。
菱形是轴对称图形,对称轴有2条,即两条对角线所在直线。
菱形是中心对称图形。
特殊定理:
1、具有平行四边形的性质。
2、菱形的四条边相等。
3、菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形是轴对称图形,它有两条对称轴。(特殊的菱形-正方形有4条对称轴)
2、菱形的判定方法5个
菱形的5个判定方法如下:
一、四条边都相等的四边形是菱形。
二、有一组邻边相等的平行四边形是菱形。
三、对角线互相垂直的平行四边形是菱形。
四、对角线互相垂直且平分的四边形是菱形。
五、有一条对角线平分一组对角的平行四边形是菱形。
更加常用的判定方法其实只有以下三种:
1、四条边都相等的四边形是菱形。
2、对角线相互垂直的平行四边形是菱形。
3、有一组邻边相等的平行四边形是菱形。
并且菱形是在平行四边形的前提下定义的,它是一个平行四边形,而且是一个特殊的平行四边形,所以也可以说菱形是一个特殊的平行四边形。
:
平行四边形的判定:
1:有两组对边分别相等的四边形是平行四边形
2:两组对边分别平行的四边形是平行四边形
3:一组对边平行且相等的四边形是平行四边形
4:对角线互相平分的四边形是平行四边形
5:对角线相等的四边形是平行四边形
3、菱形的判定是什么?
菱形的判定是:有一组邻边相等的平行四边形叫做菱形。在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。菱形是特殊的平行四边形之一。有一组邻边相等的平行四边形称为菱形。
菱形的判定定理:
1、菱形的对边平行,四条边都相等。
2、菱形的对角相等。
3、菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
4.四边都相等的四边形是菱形。
5.对角线互相垂直的平行四边形是菱形。
4、菱形的判定条件是什么?
菱形的判定条件:
1、一组邻边相等的平行四边形是菱形;
2、对角线互相垂直的平行四边形是菱形;
3、四条边均相等的四边形是菱形;
4、菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
在一个平面内,有一组邻边相等的平行四边形是菱形。
菱形的性质:
1、菱形具有平行四边形的一切性质;
2、菱形的四条边都相等;
3、菱形的对角线互相垂直平分且平分每一组对角
4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形还是中心对称图形
5、菱形的面积等于两条对角线乘积的一半;当不易求出对角线长时,就用平行四边形面积的一般计算方法计算菱形面积S=底×高
菱形:
请添加微信号咨询:19071507959
最新更新
推荐阅读
猜你喜欢
关注我们
