函数定义域,函数的定义域是什么?
1、函数的定义域是什么?
函数的定义域是:
设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应。
那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。
函数的特性:
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
2、函数的定义域是什么?
函数的定义域就是使函数有意义的自变量的取值集合
1,对于函数是整式结构,没有特殊说明,定义域为R
例:y=X^2+3X-5,定义域为R
2,分式结构,分母不为零
例:y=(3x+5)/(x^2-1)
函数要有意义则x^2-1≠0∴x≠±1
∴定义域为{x|x∈R,且x≠±1}
3,开偶次方根被开方数大于等于0
例:y=√(x^2-x-2)
函数要有意义则x^2-x-2≥0∴x≥2或x≤-1
∴定义域为{x|x≥2或x≤-1}
再来个综合的
例:y==[√(x^2-x-2)]/(x^2-1)
函数要有意义则x^2-x-2≥0 ① x^2-1≠0②
∴定义域为{x|x≥2或x<-1}(对两个不等式求交集)
4,对数函数要注意真数大于0,底数大于0且不等到于1这些都是有意义的条件
例:y=log2 (x^2-x-2) (x^2-x-2是真数,2是底数)
函数要有意义则x^2-x-2>0
所以定义域为{x|x>2或x<-1}
若底数含有自变量则底数大于0且不等到于1
5,若是指数为0函数,底数不能为0
例;y=(2x-1)^0
则定义域为{x|x≠1/2}
总之定义域是函数有意义的自变的范围,若是实际应用题还要符合实际意义.
3、函数的定义域是?
函数的定义域就是使函数有意义的自变量的取值集合1。
函数定义域:数学名词,是函数的三要素之一,对应法则的作用对象。指函数自变量的取值范围,即对于两个存在函数对应关系的非空集合D、M,集合D中的任意一个数,在集合M中都有且仅有一个确定的数与之对应,则集合D称为函数定义域。
函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。
其中核心是对应法则f,它是函数关系的本质特征。函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的由来
中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把function译成函数的。中国古代函字与含字通用,都有着包含的意思。李善兰给出的定义是:凡式中含天,为天之函数。
中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:凡是公式中含有变量x,则该式子叫做x的函数。所以函数是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。
4、函数的定义域是什么?
1、函数的定义域就是指自变量x的取值范围;
2、函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的;
3、函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个。最后,要重点理解函数的三要素。
:
一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称x是自变量,y是x的函数。x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系,缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
来源:百度百科-函数

请添加微信号咨询:19071507959
最新更新
推荐阅读
猜你喜欢
关注我们

留学规划
留学考试
留学指南
留学攻略
留学生活
留学信息
留学专业
留学签证
关于我们
网站首页







